Asymmetric Induction. A Model for Additions to Carbonyls Directly Bonded to Asymmetric Carbons

Gerasimos J. Karabatsos¹

Contribution from the Department of Chemistry, Michigan State University, East Lansing, Michigan 48823. Received November 14, 1966

Abstract: This manuscript describes a simple empirical model on the basis of which semiguantitative predictions of product stereospecificity, resulting from chemical additions to carbonyl groups directly bonded to asymmetric carbon atoms, are feasible. The model is based on the following assumptions. (a) Little bond breaking and making marks the diastereomeric transition states. The arrangement of the three groups of the asymmetric carbon atom with respect to the carbonyl is thus as in aldehydes and ketones, *i.e.*, one group eclipsing the carbonyl. (b) The two low-energy diastereomeric transition states that control product stereospecificity have the smallest group of the asymmetric carbon atom closest to the incoming bulky group. (c) The diastereomeric ratio is then evaluated from the relative magnitudes of the carbonyl-eclipsed group interactions. With correspondence between calculated and experimentally determined product diastereomeric ratios being fairly good, several difficulties encountered with previous models are adequately rationalized.

The major diastereomer resulting from chemical addi-I tions to carbonyl groups directly bonded to asymmetric carbon atoms can be generally predicted as a consequence of the investigations and correlations of Cram and his co-workers.² To this end three empirical models may be used:² the open chain (I),³ the rigid (II),⁴ and the dipolar (III).⁵ In the open-chain model (s,

small; M, medium; L, large), which applies to cases where the groups attached to the asymmetric carbon are alkyls or aryls, approach from the side of the small group s is favored over approach from the side of the medium group M. Product stereospecificity therefore depends on the relative magnitudes of $\mathbf{R}' \leftrightarrow \mathbf{s}$ and \mathbf{R}' \leftrightarrow M steric interactions. When one of the three groups is oxygen or nitrogen, model II is applicable. Approach from the side of the small group s is again favored. Failure of model II to predict correctly the resultant major diastereomer in additions to α -chloro ketones has led to the dipolar model III.

Aside from occasional failures^{2,6} of the rigid model II to correctly predict the major diastereomer, several aspects associated with the success and failure of these models are puzzling.

1. The diastereometric product ratio A/B(IV) decreases with R varying from methyl to isopropyl, as if the

- D. J. Cram and F. A. Abd Elhafez, *ibid.*, 74, 5828 (1952).
 D. J. Cram and K. R. Kopecky, *ibid.*, 81, 2748 (1959).

$$B \leftarrow \begin{array}{c} R \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} H \\ H \\ H \\ H \end{array} \rightarrow A \qquad \begin{array}{c} \frac{R}{Me^{3,7}} & \frac{A/B}{2-4/1} \\ Et^8 & 2.5/1 \\ i \cdot Pr^9 & 1, 1.3, 1.9/1 \\ IV \end{array}$$

effective size of isopropyl were smaller than that of methyl.

2. When the third group on the asymmetric carbon is ethyl instead of phenyl (V), the diastereomeric product ratio A/B decreases⁷ to the point where the model

$$B \leftarrow \bigvee_{\substack{R \\ P \\ R}}^{Me} \stackrel{O}{\underset{Et}{\longrightarrow}} H \rightarrow A \qquad \stackrel{\frac{R}{H}}{\underset{Me}{\overset{A/B}{1.5/1}}}_{Me} 0.94, 1.04/1$$

does not predict the major diastereomer.

3. Whereas methyl and ethyl behave as if of equal effective size in IV-and substantially bulkier than hydrogen-methyl competes as effectively against ethyl (VI) as does hydrogen.

4. The frequently very high diastereomeric product ratios obtained in reactions where the rigid model II applies contrast sharply with the modest ratios observed in analogous reactions where the open-chain model I applies. The following cogently illustrates

- (7) Y. Gault and H. Felkin, Bull. Soc. Chim. France, 1342 (1960).
- (8) D. J. Cram, F. A. Abd Elhafez, and H. Weingarten, J. Am. Chem. Soc., 75, 2293 (1953).
- (9) D. J. Cram and F. A. Abd Elhafez, ibid., 76, 22 (1954).
- (10) D. J. Cram and J. Allinger, ibid., 76, 4516 (1954).
- (11) D. J. Cram and J. D. Knight, ibid., 74, 5835 (1952).

Fellow of the Alfred P. Sloan Foundation.
 D. J. Cram and D. R. Wilson, J. Am. Chem. Soc., 85, 1245 (1963). and previous references.

⁽⁵⁾ J. W. Cornforth, R. H. Cornforth, and K. K. Mathews, J. Chem. Soc., 112 (1959).

⁽⁶⁾ J. H. Stocker, P. Sidisunthorn, B. M. Benjamin, and C. J. Collins, J. Am. Chem. Soc., 82, 3913 (1960).

this point. The diastereomeric product ratio¹² A/B in VII is 50. If this ratio is indicative of the relative effective sizes of hydrogen and methyl, at least as large a ratio should have been found in reactions where the open-chain model applies (IV).

5. Although their empirical nature has been stressed, the models have been considered to embody the rationale of their success. For example, the success of I may be justified on the grounds that the metal alkyls or hydrides "probably coordinate with the carbonyl group of the starting material as well as with a mole of ether. The oxygen, therefore, becomes effectively the bulkiest group in the molecule and tends to orient itself between the two least bulky groups attached to the adjacent asymmetric carbon atom."³ The applicability of model III has been rationalized⁵ on the grounds that the depicted conformation III, where polarization of the carbonyl group is easiest as a result of the C=O and C-Cl dipoles being antiparallel, is the most reactive. The accumulation of recent evidence¹³ that the stable conformations about sp2-sp3 carboncarbon bonds have a single bond eclipsing the double bond, as in VIII, appears to be-at least superficially-

in conflict with these rationalizations and makes the success of models I and III the more intriguing.¹⁴

This manuscript represents an effort to explain these difficulties in terms of a simple empirical model, on the basis of which semiquantitative predictions about diastereomeric product ratios might be made.

Grignard additions¹⁵ to and hydride reductions¹⁶ of carbonyl groups have E_a and ΔS^{\pm} values between 8 and 15 kcal/mole and -20 to -40 eu, respectively. As rotational barriers about the relevant sp²-sp³ carboncarbon bonds should be much lower, the Curtin-Hammett principle¹⁷ requires that the diastereomeric product ratio depend solely on the free-energy difference, $G_A^{\pm} - G_B^{\pm}$, between the two diastereomeric transition states. Successful prediction of product stereospecificity, therefore, requires knowledge of the structures of the pertinent diastereomeric transition states.

With respect to the reaction coordinate, two extreme situations, with a broad spectrum in between, are conceivable: reactant-like transition states marked by little bond breaking and making, and product-like transition states marked by extensive bond breaking and making. From product stereospecificity the terms "steric approach control" and "product development control" have been introduced.¹⁸ The rapidity and exothermicity of the reactions in question, as well as the experimental product stereospecificities, lead to the first assumption on which the proposed model will be based. Little bond breaking and making has occurred at the transition states. Consequently, the arrangement of the groups of the asymmetric carbon atom with respect to the carbonyl group is similar to that about sp²-sp³ carboncarbon bonds (VIII). Although the species in question is the complexed rather than the free carbonyl, expecting the stable conformations to be other than those depicted in IX is unwarranted. In somewhat analogous systems, $X (Z = alkyl, OR, NR_2)$, the stable conforma-

tions are as pictured.¹⁹

On the basis of the first assumption, the most stable diastereomeric transition states are qualitatively predictable. Consider the three transition states, XI,²⁰

XI', and XI'', that lead to one diastereomer, A. Of the three, XI, the one where the incoming bulky group \mathbf{R}' is closest to the smallest group, s, should be the most stable. Its advantage over XI' is evident by inspection, as the $R \leftrightarrow s$ and $R' \leftrightarrow s$ should be favored over $R \leftrightarrow M$ and $R' \leftrightarrow L$, respectively. Even the $M \leftrightarrow$ O interaction in XI is less severe than the s \leftrightarrow O in XI'. For example, when s is hydrogen and M is methyl, the M \leftrightarrow O is favored by about 800 cal/mole.¹³ The advantage of XI over XI" is less obvious, as the $R \leftrightarrow M$ interaction in XI'' should be energetically better than the $R \leftrightarrow L$ in XI. XI, however, is favored by the interactions involving the bulky group \mathbf{R}' and by $M \leftrightarrow O$ over $L \leftrightarrow O$. With respect to the latter interaction, when M is methyl and L is phenyl, $M \leftrightarrow$ O is favored by about 600 cal/mole.¹³ From similar arguments XII should be the most stable of the three transition states, XII, XII' and XII'', leading to the

⁽¹²⁾ B. M. Benjamin, H. J. Schaeffer, and C. J. Collins, J. Am. Chem. Soc., 79, 6160 (1957).

⁽¹³⁾ G. J. Karabatsos and N. Hsi, *ibid.*, 87, 2864 (1965), and references cited therein.

⁽¹⁴⁾ Aliphatic ketones and α -haloacetaldehydes also exist in conformation VIII (from unpublished results of G. J. Karabatsos, N. Hsi, and D. Fenoglio).

⁽¹⁵⁾ N. M. Bikales and E. I. Becker, Can. J. Chem., 41, 1329 (1963);
M. Anteunis, J. Org. Chem., 26, 4214 (1961).
(16) H. C. Brown and K. Ichikawa, J. Am. Chem. Soc., 84, 373 (1962);

 ⁽¹⁶⁾ H. C. Brown and K. Ichikawa, J. Am. Chem. Soc., 84, 373 (1962);
 W. N. Moulton, R. E. Van Atta, and R. R. Rush, J. Org. Chem., 26, 290 (1961).

⁽¹⁷⁾ D. Y. Curtin, *Record Chem. Progr.* (Kresge-Hooker Sci. Lib.), 15, 111 (1954). See also E. L. Eliel, "Stereochemistry of Organic Compounds," McGraw-Hill Book Co., Inc., New York, N. Y., 1962, Chapter 6, pp 151-156.

⁽¹⁸⁾ W. G. Dauben, G. J. Fonken, and D. S. Noyce, J. Am. Chem. Soc., 78, 2579 (1956).

⁽¹⁹⁾ G. J. Karabatsos, N. Hsi, and K. L. Krumel, Tetrahedron, in press.

⁽²⁰⁾ The open-chain model pictured on the first page of ref 2 closely resembles XI. Its dihedral angle differs from that of XI by about 30° .

other diastereomer, **B**. The second assumption, therefore, may now be formulated as follows. The diastereomeric transition states that control product stereospecificity have the smallest group, s, closest to the incoming bulky group R' (XI and XII).

Qualitative prediction of the diastereomeric ratio A/B requires now evaluation of the relative stabilities of XI and XII. When the groups s, M, and L are alkyls or aryls, this evaluation must be primarily based on the relative importance of three corresponding interactions: $R' \leftrightarrow M, R \leftrightarrow L$, and $M \leftrightarrow O$ in XI, and correspondingly $R' \leftrightarrow L$, $R \leftrightarrow M$, and $L \leftrightarrow O$ in XII. Of these, the first favors XI and the second XII. Whereas the extent to which these two interactions counteract each other is unpredictable and variant, the third interaction, $M \leftrightarrow O \text{ vs. } L \leftrightarrow O$, is evaluable. For example, when M is methyl and L is phenyl, $M \leftrightarrow O$ is favored over L \leftrightarrow O by about 600 cal/mole;¹³ when M is methyl and L is ethyl, $M \leftrightarrow O$ is favored by about 100 cal/mole. On the basis of this interaction, therefore, the greater stability of XI over XII would lead to A/B ratios that are greater than unity.

In order to test the reliability of semiquantitatively predicting diastereomeric product ratios by considering only $M \leftrightarrow O vs. L \leftrightarrow O$ interactions, 30 examples available in literature are listed in Table I. The experimental $G_A^{\pm} - G_B^{\pm}$ values were calculated from eq 1. The

$$G_{\rm A}^{\pm} - G_{\rm B}^{\pm} = -RT \ln {\rm A/B}$$
 (1)

calculated $G_A^{\pm} - G_B^{\pm}$ values represent $[M \leftrightarrow O] - [L \leftrightarrow O]$ interactions.¹³ Because the $[M \leftrightarrow O] - [L \leftrightarrow O]$ values involving phenyl are solvent dependent, those listed for L = phenyl are from ether solvents. The methyl *vs.* cyclohexyl value, entries 22–26, was taken as -300 cal/mole, so as to be 100 cal/mole less negative than the -400 cal/mole of methyl *vs.* isopropyl. On the grounds that $[M \leftrightarrow O] - [L \leftrightarrow O]$ values for aldehydes and compounds X are similar,¹⁹ their use for the complexed carbonyl is justifiable.

With the exception of entries 29 and 30, for which no good explanation now can be offered, the correspondence between experimental and calculated values must be regarded as surprisingly good, not only because of the experimental uncertainties associated with these values, but also because of the inherent limitations and weaknesses of this as well as any other model designed to quantitatively predict product stereospecificity. The following additional comments further emphasize this point. (a) Judging from the effect that an optically active solvent has on the energies of enantiomeric transition states, $G_A^{\pm} - G_{A'^{\pm}}$ up to 100 cal/mole,²¹ solvation of the two diastereomeric transition states might contribute as much as 50–100 cal/mole to the experimental $G_A^{\pm} - G_B^{\pm}$ values. (b) The neglected unknown quantity $[(R \leftrightarrow L) + (R' \leftrightarrow M)] - [(R \leftrightarrow$ $M) + (R' \leftrightarrow L)]$ will depend on R and R', and the experimental $G_A^{\pm} - G_B^{\pm}$ values for a given asymmetric

(21) N. Allentoff and G. F. Wright, J. Org. Chem., 22, 1 (1957).

 Table I.
 Experimental and Calculated Free-Energy Differences

 between the Two Diastereomeric Transition States

No. Reaction Exptl Ref Calcd ¹³ 1 PhMeHC-CHO + MeMgI -410 3 -600 2 PhMeHC-COMe + LiAlH ₄ -550 3 -600 3 PhMeHC-COEt + LiAlH ₄ -410 3 -600 4 PhMeHC-COP + EtMgI -650 3 -600 5 PhMeHC-CHO + EtMgI -650 3 -600 6 PhMeHC-CHO + MeMgBr -830 3 -600 7 PhMeHC-CHO + MeMgBr -830 3 -600 8 PhMeHC-CHO + MeMgBr -460 7 -600 9 PhMeHC-CMO = TMg*X -400 a -700° + LiAlH ₄ -650 3 -500 12 PhEHC-CHO + MeMgI -550 3 -500 13 PhEtHC-CHO + EtMgBr -650 8 -500 14 PhEtHC-CHO + EtMgBr -650 8 -500 15 PhEtMeC-COEt + MeLi -530 11 -500 </th <th></th> <th></th> <th>~ +</th> <th>C +]</th> <th>/</th>			~ +	C +]	/
No. Reaction Expti Ref Calcd ¹³ 1 PhMeHC-CHO + MeMgI -410 3 -600 2 PhMeHC-COMe + LiAlH ₄ -550 3 -600 3 PhMeHC-CHO + EtMgI -650 3 -600 4 PhMeHC-CHO + EtMgI -650 3 -600 5 PhMeHC-CHO + PhMgBr -830 3 -600 6 PhMeHC-CHO + PhMgBr -830 3 -600 7 PhMeHC-CMO + PhMgBr -460 7 -600 8 PhMeHC-CMe) = mMg*X -400 a -700° 9 PhMeHC-CMe)= mMg*X -420 a -700° + LiAlH ₄ -650 3 -500 12 PhEHC-CHO + MeMgI -550 3 -500 13 PhEtHC-COMe + EtLi -530 11 -500 14 PhEtMeC-COMe + EtLi -530 11 -500 15 PhEtMeC-CHO + <i>i</i> -380 9 -200			$G_A + -$	$G_B +, cal/$	mole
1 PhMeHC-CHO + MeMgI -410 3 -600 2 PhMeHC-COMe + LiAlH ₄ -550 3 -600 3 PhMeHC-COEt + LiAlH ₄ -410 3 -600 4 PhMeHC-COPt + LiAlH ₄ -830 3 -600 5 PhMeHC-CHO + PhMgBr -830 3 -600 6 PhMeHC-CHO + MeMgBr -460 7 -600 7 PhMeHC-C(Me)=	NO.	Reaction	Expti	Rei	Calco
1 Initiality 100 3 -600 3 PhMeHC-COMe + LiAlH ₄ -550 3 -600 4 PhMeHC-COEt + LiAlH ₄ -830 3 -600 5 PhMeHC-CHO + EtMgI -650 3 -600 6 PhMeHC-CHO + EtMgI -650 3 -600 7 PhMeHC-CHO + MeMgI -830 3 -600 7 PhMeHC-CHO + MeMgI -830 3 -600 7 PhMeHC-CMO + LiAlH ₄ -660, -700 7 -600 8 PhMeHC-C(Me)= $\overline{N}Mg^{+}X$ -400 a -700° 9 PhMeHC-C(Me)= $\overline{N}Mg^{+}X$ -420 a -700° + LiAlH ₄ -650 3 -500 10 PhEHC-CMO + MeMgI -550 3 -500 12 PhEHC-CHO + EtMgBr -650 8 -500 13 PhEtHC-COMe + EtLi -530 11 -500 14 PhEtMeC-COMe + EtLi -830 11 -500 15 PhEtMeC-CHO + HoLi -830 1 <t< td=""><td>1</td><td>PhMeHC-CHO + MeMgI</td><td>-410</td><td>3</td><td>- 600</td></t<>	1	PhMeHC-CHO + MeMgI	-410	3	- 600
2 PhMeHC-COEt + LiAlH ₄ -410 3 -600 4 PhMeHC-CHO + EtMgI -650 3 -600 5 PhMeHC-CHO + HiAlH ₄ -830 3 -600 6 PhMeHC-CHO + MeMgBr -830 3 -600 7 PhMeHC-CHO + MeMgBr -460 7 -600 8 PhMeHC-CMe + LiAlH ₄ -660, -700 7 -600 9 PhMeHC-CMe + EiAlH ₄ -660, -700 7 -600 9 PhMeHC-CMe + EiAlH ₄ -660, -700 7 -600 9 PhMeHC-CMe + LiAlH ₄ -660, -700 7 -600 9 PhMeHC-CMe + LiAlH ₄ -660, -700 7 -600 10 PhMeHC-CMe + LiAlH ₄ -650 3 -500 12 PhEtHC-CHO + MeMgBr -420 a -700° 13 PhEtHC-COMe + EtLi -530 1 -500 14 PhEtHC-COMe + EtLi -530 1 -500 15 PhEtMeC-COH + HeLiAlH ₄ -470 10 -500 16 PhEtMeC-CHO + iAlH ₄	2	PhMeHC-COMe + LiAlH	- 550	ž	- 600
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2	$PhM_{e}HC_{O}C_{O}E_{t} \perp I_{i}A_{i}H_{i}$	- 410	3	_ 600
4 PhiMeHC-CHO + Ehngli -000 3 -600 5 PhMeHC-CHO + PhMgBr -830 3 -600 7 PhMeHC-CHO + MeMgBr -460 7 -600 8 PhMeHC-COMe + LiAlH ₄ -660, -700 7 -600 9 PhMeHC-C(Me)=	1	$\frac{1}{1} \frac{1}{1} \frac{1}$	-410	2	- 000
5 PhMeHC-COPH + LIAIH ₄ -630 3 -600 6 PhMeHC-CHO + PhMgBr -830 3 -600 7 PhMeHC-CHO + MeMgBr -460 7 -600 8 PhMeHC-CMe + LiAIH ₄ -660, -700 7 -600 9 PhMeHC-C(Me)= $\overline{N}Mg^+X$ -400 a -700° + LiAIH ₄ -420 a -700° 10 PhMeHC-COMe + LiAIH ₄ -650 3 -500 12 PhEtHC-COMe + LiAIH ₄ -650 8 -500 13 PhEtHC-COMe + LiAIH ₄ -650 8 -500 14 PhEtHC-COMe + EtMgBr -650 8 -500 15 PhEtMeC-COMe + EtLi -530 11 -500 16 PhEtMeC-COH + PhMgBr -410 10 -500 17 PhEtMeC-CHO + i. -380 9 -200 18 PhEtMeC-CHO + i. -380 9 -200 19 Ph.·PHC-CHO + i. -160 9 -200 12 CeHuMeHC-CHO + MeBBr -220	4	Physic Coph + Ling	-030	3	- 000
0 PhMeHC-CHO + PhMgBr -830 3 -600 7 PhMeHC-CHO + MeMgBr -460 7 -600 8 PhMeHC-COMe + LiAlH ₄ -660, -700 7 -600 9 PhMeHC-C(Me)==NMg*X -400 a -700° + LiAlH ₄ -420 a -700° 10 PhMeHC-CMO + MeMgI -550 3 -500 12 PhEtHC-COMe + LiAlH ₄ -650 8 -500 13 PhEtHC-COMe + EtLi -530 11 -500 14 PhEtHC-COMe + EtLi -530 11 -500 15 PhEtMeC-COMe + EtLi -530 11 -500 16 PhEtMeC-COHe + HeLi -830 11 -500 17 PhEtMeC-COHe + HeLi -830 11 -500 18 PhEtMeC-CHO + PhMgBr -410 10 -500 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -160 9 -200 PrMgBr -6 9 -200 PrMgBr 20 Ph- <i>i</i> -PrHC-CHO + MeLi -100 9	2	$PhMeHC-COPn + LIAIH_4$	- 830	3	- 600
7 PhMeHC-CHO + MeMgBr - 460 7 -600 8 PhMeHC-COMe + LiAIH ₄ -660, -700 7 -600 9 PhMeHC-C(Me)= $\overline{N}Mg^+X$ -400 a -700° + LiAIH ₄ -420 a -700° 10 PhMeHC-C(Me)= $\overline{N}Mg^+X$ -420 a -700° + NH ₄ +HCO ₂ ⁻ - -650 3 -500 11 PhEtHC-COMe + LiAIH ₄ -650 3 -500 12 PhEtHC-COMe + LiAIH ₄ -650 8 -500 13 PhEtHC-COMe + ELi -530 11 -500 14 PhEtHC-COEt + MeLi -830 11 -500 15 PhEtMeC-COPh + ELi -530 11 -500 16 PhEtMeC-COPh + LiAIH ₄ -470 10 -500 17 PhEtMeC-CHO + <i>i</i> - -380 9 -200 PrMgBr PhetMeBr -110 0 -300 17 PhEtMeC-CHO + <i>i</i> - 0 9 -200 PrMgBr -6MgBr -220 <i>b</i>	6	PhMeHC-CHO + PhMgBr	-830	3	- 600
8 PhMeHC-COMe + LiAIH ₄ -660, -700 (0°) (-70°) 7 -600 (0°) (-70°) 9 PhMeHC-C(Me)= $\overline{N}Mg^+X$ -400 a -700° + 141H ₄ 10 PhMeHC-C(Me)= $\overline{N}Mg^+X$ -420 a -700° + NH ₄ +HCO ₂ ⁻¹ 11 PhEtHC-CMO + MeMgI -550 3 -500 12 PhEtHC-COMe + LiAIH ₄ -650 8 -500 13 PhEtHC-COMe + EtiAIH ₄ -650 8 -500 14 PhEtHC-COMe + EtiA -530 11 -500 15 PhEtMeC-COMe + EtiA -530 11 -500 16 PhEtMeC-COPh + LiAIH ₄ -470 10 -500 17 PhEtMeC-CHO + <i>i</i> - -380 9 -200 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -160 9 -200 PrMgBr - - -480 b -300 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - - 0 9 -200 PrMgBr - - - - - - - - - - - - - <td>7</td> <td>PhMeHC-CHO + MeMgBr</td> <td>-460</td> <td>7</td> <td>-600</td>	7	PhMeHC-CHO + MeMgBr	-460	7	-600
9 PhMeHC-C(Me)= $\overline{N}Mg^{+}X$ -400 a -700° + LiAlH ₄ 10 PhMeHC-C(Me)= $\overline{N}Mg^{+}X$ -420 a -700° + NH ₄ ⁺ HCO ₂ ⁻ 11 PhEtHC-CHO + MeMgI -550 3 -500 12 PhEtHC-COMe + LiAlH ₄ -650 8 -500 13 PhEtHC-COMe + EtMgBr -650 8 -500 14 PhEtHC-COMe + EtLi -530 11 -500 15 PhEtMeC-COMe + EtLi -530 11 -500 16 PhEtMeC-COEt + MeLi -830 11 -500 17 PhEtMeC-CHO + PhMgBr -410 10 -500 18 PhEtMeC-CHO + heli -830 9 -200 PrMgBr - 20 Ph- <i>i</i> -PrHC-CHO + <i>i</i> 160 9 -200 PrMgBr - 21 Ph- <i>i</i> -PrHC-CHO + <i>i</i> 160 9 -200 PrHgBr - 22 C ₆ H ₁₁ MeHC-CHO + <i>i</i> 380 b -300 (pentane) 23 C ₆ H ₁₁ MeHC-CHO + MeLi -220 b -300 (cether) 24 C ₆ H ₁₁ MeHC-CHO + MeLi -110 b -300 MeMgI 25 C ₆ H ₁₁ MeHC-CHO + MeLi -110 b -300 (cether) 26 C ₆ H ₁₁ MeHC-CHO + MeLi -110 b -300 (cether) 27 EtMeHC-CHO + MeLi -16, +32, 7 -100 28 EtMeHC-COMe + 1380 9 -200 NaBH ₄ 29 Ph- <i>i</i> -PrHC-CHO + MeMgBr -220 7 -100 29 Ph- <i>i</i> -PrHC-CHO + MeMgBr -220 7 -100 20 C ₆ H ₁₁ MeHC-COMe + -380 9 -200 NaBH ₄ 27 EtMeHC-CHO + MeMgBr -220 7 -100 28 EtMeHC-COMe + 1380 9 -200 LiAlH ₄ 30 C ₆ H ₁₁ MeHC-COMe + + 380 b -300 Al(<i>i</i> -PrO) ₃	8	$PhMeHC-COMe + LiAlH_4$	-660, -70)U 7 1.°ນ	-600
10 PhMeHC-C(Me)= $\overline{N}Mg^+X$ -420 a -700^e + NH4 ⁺ HCO ₂ ⁻ -550 3 -500 11 PhEtHC-CHO + MeMgI -550 3 -500 12 PhEtHC-COMe + LiAlH ₄ -650 8 -500 13 PhEtHC-CHO + EtMgBr -650 8 -500 14 PhEtHC-COEt + LiAlH ₄ -650 8 -500 15 PhEtMeC-COMe + EtLi -530 11 -500 16 PhEtMeC-COHO + PhMgBr -410 10 -500 17 PhEMeC-COHO + PhMgBr -410 10 -500 18 PhEtMeC-CHO + heli -180 9 -200 PrMgBr -410 10 -500 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -380 9 -200 PrMgBr 0 9 -200 PrHgBr 20 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - 0 9 -200 PrLi (pentane) 22 C ₆ H ₁₁ MeHC-CHO + MeLi -110 b -300 23 C ₆ H ₁₁ MeHC-CHO + MeLi -220	9	PhMeHC-C(Me)= $\overline{N}Mg^+X$	-400	a (0	<i>—</i> 700°
11 PhEtHC-CHO + MeMgI -550 3 -500 12 PhEtHC-COMe + LiAlH ₄ -650 3 -500 13 PhEtHC-CHO + EtMgBr -650 8 -500 14 PhEtHC-COEt + LiAlH ₄ -650 8 -500 15 PhEtMC-COEt + LiAlH ₄ -650 8 -500 16 PhEtMeC-COEt + MeLi -830 11 -500 17 PhEtMeC-COPh + EtLiAlH ₄ -470 10 -500 18 PhEtMeC-COPh + LiAlH ₄ -470 10 -500 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -380 9 -200 PrMgBr 20 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - 0 9 -200 PrMgBr + 6MgBr ₂ 21 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - 0 9 -200 PrLi (pentane) 22 $C_6H_{11}MeHC-CHO + MeLi$ -110 b -300 23 $C_8H_{11}MeHC-CHO + MeLi$ -110 b -300 (pentane) 24 $C_6H_{11}MeHC-COMe + -200$ b -300	10	PhMeHC-C(Me)= $\overline{N}Mg^+X$ + NH ₄ +HCO ₂ -	-4 2 0	а	− 700°
12 PhEtHC-COMe + LiAlH ₄ -650 3 -500 13 PhEtHC-COMe + LiAlH ₄ -650 8 -500 14 PhEtHC-COEt + LiAlH ₄ -650 8 -500 15 PhEtMeC-COMe + EtLi -530 11 -500 16 PhEtMeC-COMe + EtLi -530 11 -500 17 PhEtMeC-COH + PhMgBr -410 10 -500 18 PhEtMeC-COP + LiAlH ₄ -470 10 -500 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -380 9 -200 PrMgBr - <td>11</td> <td>PhEtHC-CHO + MeMgI</td> <td>-550</td> <td>3</td> <td>-500</td>	11	PhEtHC-CHO + MeMgI	-550	3	-500
13 PhEtHC-CHO + EtMgBr -650 8 -500 14 PhEtHC-COEt + LiAlH ₄ -650 8 -500 15 PhEtMeC-COMe + EtLi -530 11 -500 16 PhEtMeC-COEt + MeLi -830 11 -500 17 PhEtMeC-CHO + PhMgBr -410 10 -500 18 PhEtMeC-CHO + PhMgBr -410 10 -500 19 Ph-i-PrHC-CHO + i- -380 9 -200 PrMgBr - -160 9 -200 PrMgBr - <	12	$PhEtHC-COMe + LiAlH_{4}$	-650	3	-500
10 File	13	PhEtHC-CHO + EtMgBr	-650	8	- 500
14 Interface Code + Ething -530 1 -500 15 PhEtMeC-COMe + Ething -530 11 -500 16 PhEtMeC-COEt + MeLi -830 11 -500 17 PhEtMeC-COEt + MeLi -830 11 -500 18 PhEtMeC-CHO + PhMgBr -410 10 -500 19 Ph-i-PrHC-CHO + i- -380 9 -200 PrMgBr -160 9 -200 PrMgBr + 6MgBr2 21 Ph-i-PrHC-CHO + i- 0 9 -200 PrLi (pentane) 22 C6H11MEHC-CHO + i- 0 9 -200 23 C6H11MEHC-CHO + MeLi -110 b -300 (pentane) 24 C6H11MEHC-CHO + MeLi -110 b -300 24 C6H11MEHC-COMe + -320 b -300 (ether) 25 C6H11MEHC-COMe + -200 b -300 25 C6H11MEHC-CHO + MeMgBr -220 7 -100 26 C6H11MEHC-CHO + MeMgBr -220 7 -100 <	14	$PhEtHC-COEt \perp LiAlH$	-650	8	- 500
13 Interface Code + MeLi -330 11 -500 16 PhEtMeC-COEt + MeLi -830 11 -500 17 PhEtMeC-CHO + PhMgBr -410 10 -500 18 PhEtMeC-CHO + PhMgBr -410 10 -500 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -380 9 -200 PrMgBr 20 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - 0 9 -200 PrMgBr 6MgBr ₂ 21 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - 0 9 -200 21 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - 0 9 -200 PrLi (pentane) 22 C ₆ H ₁₁ MeHC-CHO + MeLi -110 <i>b</i> -300 MeMgI 23 C ₆ H ₁₁ MeHC-CHO + MeLi -110 <i>b</i> -300 (pentane) 24 C ₆ H ₁₁ MeHC-COMe + -320 <i>b</i> -300 24 C ₆ H ₁₁ MeHC-COMe + -200 <i>b</i> -300 (ether) 25 C ₆ H ₁₁ MeHC-COMe + -200 <i>b</i> -300 25 C ₆ H ₁₁ MeHC-CHO + MeMgBr -220 7 -100	15	PhEtMeC-COMe \pm EtL i	- 530	11	- 500
10 FileLiMeC-CHO + FileLimeter - 330 11 -303 17 PhEtMeC-CHO + PhMgBr -410 10 -500 18 PhEtMeC-COPh + LiAlH ₄ -470 10 -500 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -380 9 -200 PrMgBr - - - 9 -200 PrMgBr + 6MgBr ₂ - 0 9 -200 PrHi(pentane) - 0 9 -200 22 C ₆ H ₁₁ MeHC-CHO + MeLi -110 b -300 MeMgI - - 300 (pentane) - 300 23 C ₆ H ₁₁ MeHC-COMe + - - 300 - 300 (ether) - - 300 b - 300 - 24 C ₆ H ₁₁ MeHC-COMe + - - - 300 - <	16	PhEtMoC COEt + MoLi	- 530	11	500
17 FileLineC-CHO + Printiger -410 10 -500 18 PhEtMeC-COPh + LiAlH ₄ -470 10 -500 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -380 9 -200 PrMgBr -160 9 -200 PrMgBr -160 9 -200 PrMgBr + 6MgBr ₂ - - - 21 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - 0 9 -200 PrLi (pentane) - <t< td=""><td>17</td><td>PhEtMaC CHO + PhMaPa</td><td>- 830</td><td>10</td><td>- 500</td></t<>	17	PhEtMaC CHO + PhMaPa	- 830	10	- 500
18 Phetemete-COPh + LiAlH ₄ -470 10 -500 19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -380 9 -200 PrMgBr 20 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -160 9 -200 PrMgBr + 6MgBr ₂ 21 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - 0 9 -200 PrLi (pentane) 22 C_6H_{11} MeHC-CHO + MeLi -220 b -300 23 C_6H_{11} MeHC-CHO + MeLi -220 b -300 (pentane) 24 C_6H_{11} MeHC-CHO + MeLi -110 b -300 (ether) 25 C_6H_{11} MeHC-COMe + -320 b -300 25 C_6H_{11} MeHC-COMe + -220 b -300 141H_4 26 C_6H_{11} MeHC-COMe + -220 b -300 26 C_6H_{11} MeHC-COMe + -220 7 -100 27 EtMeHC-CHO + MeMgBr -220 7 -100 28 EtMeHC-CHO + MeMgBr -220 7 -100 29 Ph- <i>i</i> -PrHC-CO <i>i</i> -Pr + -1380	17	Phetmec-CHO + PhMgBr	-410	10	- 500
19 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -380 9 -200 PrMgBr -380 9 -200 PrMgBr -160 9 -200 PrMgBr + 6MgBr ₂ 0 9 -200 PrLiprHC-CHO + <i>i</i> - 0 9 -200 PrLi (pentane) 9 -200 9 22 C ₆ H ₁₁ MeHC-CHO + <i>i</i> - 0 9 -200 MeMgI -300 <i>b</i> -300 (pentane) -200 <i>b</i> -300 (pentane) -110 <i>b</i> -300 (ether) -200 <i>b</i> -300 (ether) -200 <i>b</i> -300 25 C ₆ H ₁₁ MeHC-COMe + -200 <i>b</i> -300 NaBH ₄ -200 <i>b</i> -300 26 C ₆ H ₁₁ MeHC-COMe + -200 <i>b</i> -300 LiAlH ₄ -16, +32, 7 -100 27 EtMeHC-CO <i>i</i> -Pr + -1380 9 -200 (0°) (35°) -200 -300 -300 -300 29	18	PhEtMeC-COPh + LiAlH ₄	-4/0	10	- 500
20 Ph- <i>i</i> -PrHC-CHO + <i>i</i> - -160 9 -200 PrMgBr + 6MgBr ₂ 0 9 -200 PrLigentane) 0 9 -200 PrLi (pentane) 0 9 -200 PrLi (pentane) 0 9 -200 22 $C_6H_{11}MeHC$ -CHO + <i>i</i> - 0 9 -300 MeMgI -220 <i>b</i> -300 (pentane) 23 $C_6H_{11}MeHC$ -CHO + MeLi -220 <i>b</i> -300 (pentane) 24 $C_6H_{11}MeHC$ -CHO + MeLi -110 <i>b</i> -300 (ether) -110 <i>b</i> -300 NaBH ₄ 25 $C_6H_{11}MeHC$ -COMe + -220 <i>b</i> -300 NaBH ₄ -200 <i>b</i> -300 26 $C_6H_{11}MeHC$ -COMe + -220 7 -100 27 EtMeHC-CHO + MeMgBr -220 7 -100 28 EtMeHC-COMe + -1380 9 -200 $(0^\circ) (35^\circ)$ 29 Ph- <i>i</i> -PrHC-CO <i>i</i> -Pr + -1380 9 <	19	Ph-i-PrHC-CHO + i- $PrM_{9}Br$	- 380	9	-200
20 $h_{i}h_{i}h_{i}h_{i}h_{i}h_{i}h_{i}h_{i}$	20	$Pb_i Pr HC_C HO \perp i$	- 160	Q	- 200
21 Ph-i-PrHC-CHO + i- 0 9 -200 PrLi (pentane) 22 C_6H_{11} MeHC-CHO + -380 b -300 MeMgI 23 C_6H_{11} MeHC-CHO + MeLi -220 b -300 (pentane) 23 C_6H_{11} MeHC-CHO + MeLi -110 b -300 (pentane) 24 C_6H_{11} MeHC-CHO + MeLi -110 b -300 (ether) 25 C_6H_{11} MeHC-COMe + -320 b -300 25 C_6H_{11} MeHC-COMe + -200 b -300 10 NaBH4 200 7 -100 26 C_6H_{11} MeHC-COMe + -200 7 -100 11 $-366 (-70^\circ)$ (0^\circ) (35^\circ) 20 -200 28 EtMeHC-COi-Pr + -1380 9 -200 12 Ph-i-PrHC-COi-Pr + -1380 9 -200 12 Ph-i-PrHC-COMe + +380 b -300 13 C_6H_{11} MeHC-COMe + +380 b -300 14 14	20	$PrM_{\alpha}Pr + 6M_{\alpha}Pr$	-100	,	-200
21 Phi-PHIC-CHO + 1- 0 9 -200 PrLi (pentane) 22 $C_{6}H_{11}MeHC-CHO +$ -380 b -300 22 $C_{6}H_{11}MeHC-CHO +$ -220 b -300 23 $C_{6}H_{11}MeHC-CHO +$ MeLi -220 b -300 23 $C_{6}H_{11}MeHC-CHO +$ MeLi -110 b -300 (pentane) 24 $C_{6}H_{11}MeHC-COMe +$ -320 b -300 24 $C_{6}H_{11}MeHC-COMe +$ -320 b -300 (ether) 25 $C_{6}H_{11}MeHC-COMe +$ -200 b -300 25 $C_{6}H_{11}MeHC-COMe +$ -200 b -300 1AlH_4 -16, +32, 7 -100 26 $C_{6}H_{11}MeHC-COMe + LiAlH_4$ -16, +32, 7 -100 27 EtMeHC-COMe + LiAlH_4 -16, +32, 7 -100 29 Ph-i-PrHC-COi-Pr + -1380 9 -200 1AlH_4 -0 -300 b -300 30 $C_{6}H_{11}MeHC-COMe + + 380$ b	21	$Ph : P_{P}UC CUO + :$	0	0	200
PrL1(pentane) 22 $C_{6}H_{11}MeHC-CHO +$ MeMgI 23 $C_{6}H_{11}MeHC-CHO +$ Memory -200 b -300 (pentane) -200 24 $C_{6}H_{11}MeHC-CHO +$ Philon -110 b 24 $C_{6}H_{11}MeHC-CHO +$ Philon -300 (ether) -300 25 $C_{6}H_{11}MeHC-COMe +$ -300 -300 NaBH4 -300 26 $C_{6}H_{11}MeHC-COMe +$ -200 b -300 LiAlH4 -200 b -300 27 EtMeHC-CHO + MeMgBr -220 7 -100 28 EtMeHC-COMe + LiAlH4 -16, +32, 7 -100 -36 (-70°) (0°) (35°) -300 -300 29 Ph- <i>i</i> -PrHC-CO <i>i</i> -Pr + -1380 9 -200 LiAlH4 -30 $C_{6}H_{11}MeHC-COMe +$ +380 b -300 30 $C_{6}H_{11}MeHC-COMe +$ +380 b -300 </td <td>21</td> <td>P_{i}</td> <td>0</td> <td>9</td> <td>-200</td>	21	P_{i}	0	9	-200
22 $C_{6}H_{11}MeHC-CHO + -380$ $b -300$ MeMgI 23 $C_{6}H_{11}MeHC-CHO + MeLi$ -220 $b -300$ (pentane) 24 $C_{6}H_{11}MeHC-CHO + MeLi$ -110 $b -300$ (ether) 25 $C_{6}H_{11}MeHC-COMe + -320$ $b -300$ NaBH ₄ 26 $C_{6}H_{11}MeHC-COMe + -200$ $b -300$ LiAlH ₄ 27 EtMeHC-CHO + MeMgBr -220 7 -100 28 EtMeHC-COMe + LiAlH ₄ $-16, +32,$ 7 -100 $+36(-70^{\circ})$ (0°) (35°) 29 Ph- <i>i</i> -PrHC-CO <i>i</i> -Pr + -1380 9 -200 LiAlH ₄ 30 $C_{6}H_{11}MeHC-COMe + + 380$ $b -300$		PrL1 (pentane)		,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	$C_{6}H_{11}MeHC-CHO +$	- 380	D	- 300
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		MeMgl			
$\begin{array}{cccccccc} (\text{pentane}) & & & & & \\ 24 & C_{6}H_{11}\text{MeHC-CHO} + \text{MeLi} & -110 & b & -300 \\ & & & & & \\ (\text{ether}) & & & \\ 25 & C_{6}H_{11}\text{MeHC-COMe} + & -320 & b & -300 \\ & & & & & \\ \text{NaBH}_{4} & & & \\ 26 & C_{6}H_{11}\text{MeHC-COMe} + & -200 & b & -300 \\ & & & & & \\ \text{LiAlH}_{4} & & & \\ 27 & \text{EtMeHC-CHO} + \text{MeMgBr} & -220 & 7 & -100 \\ 28 & \text{EtMeHC-COMe} + \text{LiAlH}_{4} & -16, +32, & 7 & -100 \\ & & & & +36 (-70^{\circ}) \\ & & & & & \\ (0^{\circ}) (35^{\circ}) & & \\ \end{array}$ $\begin{array}{c} 29 & \text{Ph-}i\text{-PrHC-CO}i\text{-Pr} + & -1380 & 9 & -200 \\ & & & & \\ \text{LiAlH}_{4} & & \\ 30 & C_{6}H_{11}\text{MeHC-COMe} + & +380 & b & -300 \\ & & & & \\ \text{Al}(i\text{-PrO})_{3} & & \\ \end{array}$	23	C ₆ H ₁₁ MeHC-CHO + MeLi	-220	Ь	-300
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		(pentane)			
$\begin{array}{ccccccc} (ether) \\ 25 & C_6H_{11}MeHC-COMe + & -320 & b & -300 \\ & NaBH_4 \\ 26 & C_6H_{11}MeHC-COMe + & -200 & b & -300 \\ & LiAlH_4 \\ 27 & EtMeHC-CHO + MeMgBr & -220 & 7 & -100 \\ 28 & EtMeHC-COMe + LiAlH_4 & -16, +32, & 7 & -100 \\ & & +36 & (-70^\circ) \\ & & & (0^\circ) & (35^\circ) \\ \end{array}$ $\begin{array}{c} 29 & Ph-i-PrHC-COi-Pr + & -1380 & 9 & -200 \\ & LiAlH_4 \\ 30 & C_6H_{11}MeHC-COMe + & +380 & b & -300 \\ & Al(i-PrO)_3 \end{array}$	24	$C_6H_{11}MeHC-CHO + MeLi$	-110	Ь	-300
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		(ether)			
NaBH ₄ 26 $C_{6}H_{11}MeHC-COMe +$ -200 b -300 LiAlH ₄ 27 EtMeHC-CHO + MeMgBr -220 7 -100 28 EtMeHC-COMe + LiAlH ₄ $-16, +32,$ 7 -100 $+36 (-70^{\circ})$ $(0^{\circ}) (35^{\circ})$ 9 -200 29 Ph- <i>i</i> -PrHC-CO <i>i</i> -Pr + -1380 9 -200 LiAlH ₄ 30 $C_{6}H_{11}MeHC-COMe +$ $+380$ b -300	25	C ₆ H ₁₁ MeHC-COMe +	-320	Ь	-300
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		NaBH			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	C ₄ H ₁₁ MeHC-COMe +	-200	Ь	-300
27EtMeHC-CHO + MeMgBr EtMeHC-COMe + LiAlH4 -220 7 -100 28EtMeHC-COMe + LiAlH4 $-16, +32, +36(-70^{\circ})$ $(0^{\circ})(35^{\circ})$ 7 -100 29Ph- <i>i</i> -PrHC-CO <i>i</i> -Pr + -1380 9 -200 LiAlH430 $C_{6}H_{11}$ MeHC-COMe + $+380$ b -300		LiAlH.	200		
27 Etheric Cho + Inchight $-16, +32, -7 - 100$ 28 EtMeHC-COMe + LiAlH ₄ $-16, +32, -7 - 100$ $+36 (-70^{\circ})$ $(0^{\circ}) (35^{\circ})$ 29 Ph- <i>i</i> -PrHC-CO <i>i</i> -Pr + -1380 $9 - 200$ LiAlH ₄ 30 C_6H_{11} MeHC-COMe + $+380$ $b -300$	27	$EtMeHC-CHO \perp MeMgBr$	- 220	7	- 100
28 ELMERC-COME + LIAIA, $-10, +32, 7 -100$ +36 (-70°) (0°) (35°) 29 Ph- <i>i</i> -PrHC-CO <i>i</i> -Pr + -1380 9 -200 LiAIH ₄ 30 C ₆ H ₁₁ MeHC-COMe + +380 b -300 Al(<i>i</i> -PrO) ₃	20	$EtMoUC COM_{2} + LiAlH$	16 1 22	7	100
$\begin{array}{c} +36 (-70^{\circ}) \\ (0^{\circ}) (35^{\circ}) \\ 29 Ph-i-PrHC-COi-Pr + \\ LiAlH_4 \\ 30 C_6H_{11}MeHC-COMe + \\ Al(i-PrO)_3 \\ \end{array} + 380 \qquad b -300 \\ \end{array}$	20	$EIMERC-COMe + LIAIR_4$	-10, +32,	1	-100
$\begin{array}{c} (0^{\circ}) (33^{\circ}) \\ 29 Ph-i-PrHC-COi-Pr + & -1380 \\ LiAlH_4 \\ 30 C_6H_{11}MeHC-COMe + & +380 \\ Al(i-PrO)_3 \end{array} \qquad b -300$			+30(-1)	(0-)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(0°) (35°)	
L1AlH ₄ 30 C_6H_{11} MeHC-COMe + +380 b -300 Al(<i>i</i> -PrO) ₃	29	Pn- <i>i</i> -PrHC-CO <i>i</i> -Pr +	-1380	9	-200
$\begin{array}{ccc} 30 C_{6}H_{11}MeHC-COMe+ & +380 & b & -300 \\ & Al(i-PrO)_{3} & \end{array}$		L1AIH ₄			
Al(<i>i</i> -PrO) ₃	30	$C_6H_{11}MeHC-COMe +$	+380	Ь	-300
		Al(<i>i</i> -PrO) ₃			

^a D. J. Cram and J. E. McCarty, J. Am. Chem. Soc., **76**, 5740 (1954). ^b D. J. Cram and F. D. Green, *ibid.*, **75**, 6005 (1953). ^c These values are from ref 19.

carbon will vary. As R' increases in size the G_A^{\pm} – G_B^{\pm} values should become more negative. Discarding fortuity as the cause of agreement between experimental and calculated values, this quantity is probably small. (c) The extent of bond breaking and making at the transition states will undoubtedly vary with each reaction. This variation will thus contribute to fluctuations²² in $G_A^{\pm} - G_B^{\pm}$. (d) The experimental $G_A^{\pm} - G_B^{\pm}$ values will be affected by differences in the entropies of the two diastereomeric transition states. Although extensive studies on the variation of diastereomeric product ratio with temperature have not been carried out, the only study⁷ on systems to which the present model applies has shown that $G_A^{\pm} - G_B^{\pm}$

Karabatsos | Addition to Carbonyls Adjoining Asymmetric C

⁽²²⁾ Of interest is the question of whether product stereospecificity in acyclic systems might not be controlled by product stability, even if extensive bond breaking and making marked the transition state. It has been suggested by H. C. Brown and J. Muzzio, J. Am. Chem. Soc., **88**, 2811 (1966), that additions to both monocyclic¹⁸ and simple acyclic ketones are primarily controlled by product stability.

varies by less than 60 cal/mole in the range -70° to $+35^{\circ}$ (entries 8 and 28 in Table I). (e) The reliability and applicability of the calculated $G_{\rm A}^{\pm} - G_{\rm B}^{\pm}$ values may also be questioned. These values were calculated as follows. Considering sequences A and B,

when R is methyl, $\Delta H_{\rm A}^{\circ}$ is -800 cal/mole;¹³ when R' is isopropyl, $\Delta H_{\rm B}^{\circ}$ is -400 cal/mole.¹³ By using hydrogen as the reference, therefore, O \leftrightarrow Me is favored over O \leftrightarrow *i*-Pr by 400 cal/mole. The use of $\Delta H_{\rm A}^{\circ} - \Delta H_{\rm B}^{\circ}$ instead of $\Delta G_{\rm A}^{\circ} - \Delta G_{\rm B}^{\circ}$ values in Table I is justified.^{13,19} It should be stressed, however, that (O \leftrightarrow R) - (O \leftrightarrow R') might be different, when the groups R and R' are in the same compound, from what it is when they are indirectly compared to hydrogen.

These criticisms notwithstanding, the usefulness of the model should not be denied. For example, the decrease in ratio A/B observed in IV as R increased from methyl to isopropyl is predictable, as the ratio does not depend on the relative magnitudes of R' \leftrightarrow H and R' \leftrightarrow R interactions, but on R \leftrightarrow O (XIII)

and Ph \leftrightarrow O (XIV). When R is methyl, (R \leftrightarrow O) - (Ph \leftrightarrow O) is about -600 cal/mole; when isopropyl, it is -200 cal/mole. Similarly, the ratio A/B in V is not controlled by the interactions of R' with hydrogen and methyl, but by (Me \leftrightarrow O) (XV) - (Et \leftrightarrow O) (XVI).

This difference being about -100 cal/mole, it is not surprising to be confronted with a case where the open-chain model fails to predict the major diastereomer. The puzzling observation that methyl competes against ethyl (VI) as effectively as hydrogen does (IV) is expected by considering XVII and XVIII. In

both cases, the diastereometic ratio is controlled by $(Et \leftrightarrow O) - (Ph \rightarrow O)$.

Turning attention now to cases where a heteroatom is present at the asymmetric carbon, product stereospecificity will depend not only on the relative merits of $X \leftrightarrow O$ (XIX) and M(L) $\leftrightarrow O$ (XX) but also on the degree of stability imparted to XIX by pseudo-ring

formation. Furthermore, entropy differences will become prominent. It is not surprising, therefore, to find very high diastereomeric product ratios that are strongly susceptible to the polarity and nature of the solvent, to concentration and nature of reagent and added salt, and to the presence of agents capable of complexing with the metal.²³ The over-all high diastereomeric product ratios observed with reactions of this type, as—specifically—VIII, support further the credibility of the assumption that the diastereomeric transition states controlling product stereospecificity are those with the smallest group s closest to the incoming bulky group R'. Cases 15–18 constitute additional experimental support of this assumption.

The explanation advanced to rationalize the observed product stereospecificity in reactions of dehydrochloramphenicols,²⁴ *i.e.*, XXII is favored over XXI when R is hydrogen, is consonant with the proposed model.

In the final analysis the usefulness of a model must be measured by its success in correctly predicting new results. The following two predictions might hopefully stimulate experimentation to test the reliability of the proposed model and the plausibility of its underlying assumptions.

From $(Me \leftrightarrow O) - (t-Bu \leftrightarrow O) = -1100 \text{ cal/mole},^{13}$ the diastereomeric product ration A/B [(XXIII) vs. (XXIV)] should be about 7-8. On the basis of the open-chain model XXV, there is no special reason to

expect it to be other than 2–4.

(23) These factors have been clearly and adequately discussed by Cram and Wilson in terms of competiton between the rigid and dipolar models.²

(24) J. Sicher, M. Svoboda, M. Hrda, J. Rudinger, and F. Sorm, Collection Czech. Chem. Commun., 18, 487 (1953).

Journal of the American Chemical Society | 89:6 | March 15, 1967

The diastereomeric product ratio A/B in XXVI is about 4/1 ($G_A^{\ddagger} - G_B^{\ddagger} = -800$ cal/mole) when R is methyl or ethyl.⁵ On the basis of the dipolar model

XXVI this ratio should increase when R is changed to isopropyl or t-butyl. From consideration of XXVII and XXVIII, however, the opposite conclusion is reached. Since XXVII is experimentally favored over XXVIII by 800 cal/mole when R is methyl, it should be favored only by 400 cal/mole when R is isopropyl. The diastereomeric product ratio should therefore

decrease from 4/1 to about 2.5/1. Even more striking is the case when R is t-butyl, as XXVIII should now be the more stable of the two by about 300 cal/mole. The major diastereomer should thus be B, the diastereomeric product ratio A/B being 0.5/1.

Acknowledgment. The author thanks the National Science Foundation for a Senior Postdoctoral Fellowship, 1965-1966, and the Department of Chemistry, University of California, Berkeley, for its generous hospitality.

Equilibrium Constants and Substituent Effects in the Ionization of Aniline as a Base and the Ion-Pair Dissociation of Anilinium Acetate in Glacial Acetic Acid¹

Gary W. Ceska and Ernest Grunwald

Contribution from the Lecks Chemical Laboratories, Brandeis University, Waltham, Massachusetts 02154. Received November 16, 1966

Abstract: This paper shows that in the analysis of substituent effects, it is scientifically fruitful to divide base dissociation into two steps: ionization to form an ion pair, and dissociation of the ion pair into free ions.⁴ Equilibrium constants, K_i and K_d , for the separate steps are reported for a series of aromatic amines in acetic acid. For metaand para-substituted anilines, substituent effects on K_i are typical of aromatic side-chain reactions: $\delta_R \log K_i$ is proportional to Hammett's σ . Substituent effects on K_d are qualitatively different from those on K_i but resemble those reported by others for K_d of quaternary ammonium salts in aprotic solvents. The relative ion-pair dissociating power of substituents is approximately alkyl or phenyl > methoxy or CH_3OCH_2 > haloalkyl or halogen. This paper also reports values of K_i and K_d for several N,N-dialkylanilines and for pyridine, and compares acetic acid and cyanoacetic acid as proton donors in ionization.

Iacial acetic acid is a good medium for the study G of substituent effects on base strength in solution because one can measure separately the equilibrium constants for ionization (eq 1) and dissociation (eq 2).²⁻⁵ In this paper we report measurements of both

$$B + HAc \rightleftharpoons B \cdot HAc \qquad (1a)$$

$$B \cdot HAc \implies BH^+ \cdot Ac^-$$
 (1b)

$$K_i = [BH^+ \cdot Ac^-]/([B] + [B \cdot HAc])$$
 (1c)

$$BH^+ \cdot Ac^- \rightleftharpoons BH^+ + Ac^-$$
(2a)

$$K_{\rm d} = [\rm BH^+][\rm Ac^-]/[\rm BH^+ \cdot \rm Ac^-]$$
 (2b)

 K_i and K_d for a series of substituted anilines and pyridine. According to eq 1, K_i is a complex quantity since it depends on two equilibria, 1a and 1b. However, because HAc is the solvent, we may assume that the equilibrium in 1a lies far to the right, and K_i is then a close approximation to the equilibrium constant for the elementary proton transfer step, 1b. K_d is simply the equilibrium constant for the dissociation step, 2a.

We find for meta- and para-substituted anilines that log K_i varies linearly with the Hammett substituent constant σ ,⁶ with a correlation coefficient of 0.996. On the other hand, we find that $\log K_d$ is correlated only partially with σ ; the correlation coefficient is 0.78. It follows, of course, that substituent effects on K_i are not analogous to those on K_d , and that the plot of $\log K_i$ vs. $\log K_d$ is not a linear free energy relationship.

We also find, from the effect of added cyanoacetic acid on the ionization of substituted anilines in acetic acid, that the relative basicity of acetate ion and cyanoacetate ion is quite close to the ratio of $K_{\rm B}$ for these carboxylate ions in water.⁷

⁽¹⁾ This work was supported by the National Science Foundation under Grant GP-3921.

⁽²⁾ I. M. Kolthoff and S. Bruckenstein, J. Am. Chem. Soc., 78, 1 (1956).
(3) S. Bruckenstein and I. M. Kolthoff, *ibid.*, 78, 10 (1956).
(4) S. Bruckenstein and I. M. Kolthoff, *ibid.*, 78, 2974 (1956).
(5) For a general theoretical discussion, see J. N. Brønsted, Z. Physik.

Chem., A169, 52 (1934).

^{(6) (}a) L. P. Hammett, "Physical Organic Chemistry," McGraw-Hill Book Co., Inc., New York, N. Y., 1940, Chapter 7; (b) H. H. Jaffè, Chem. Rev., 53, 191 (1953).